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ABSTRACT: Stochastic simulation algorithms (SSAs) are
used to trace realistic trajectories of biochemical systems at low
species concentrations. As the complexity of modeled
biosystems increases, it is important to select the best
performing SSA. Numerous improvements to SSAs have
been introduced but they each only tend to apply to a certain
class of models. This makes it difficult for a systems or
synthetic biologist to decide which algorithm to employ when
confronted with a new model that requires simulation. In this
paper, we demonstrate that it is possible to determine which algorithm is best suited to simulate a particular model and that this
can be predicted a priori to algorithm execution. We present a Web based tool ssapredict that allows scientists to upload a
biochemical model and obtain a prediction of the best performing SSA. Furthermore, ssapredict gives the user the option to
download our high performance simulator ngss preconfigured to perform the simulation of the queried biochemical model with
the predicted fastest algorithm as the simulation engine. The ssapredict Web application is available at http://ssapredict.ico2s.org.
It is free software and its source code is distributed under the terms of the GNU Affero General Public License.
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Simulation of mathematical and computational models of
reaction networks is an invaluable tool for scientists aiming to
understand the dynamic behavior of complex biochemical
systems. In the fields of Systems and Synthetic Biology,
repeated rounds of model-driven hypothesis generation,
validated or refuted by wet lab experimentation, lead to refined
quantitative and predictive models, and ultimately better
biodesigns. In silico experimentation with these models is
cheaper, faster, and more reproducible than its real world (i.e.,
wet lab) counterpart. In order to maximize the potential of in
silico experimentation, it is important to ensure that (1)
simulation algorithms can scale efficiently with the class and
size of problem and (2) optimized reference code is readily
available, well documented, and easy to reuse.
Stochastic Simulation Algorithms (SSAs) are the primary

means of simulating naturally discrete cellular systems affected
by stochastic noise. They generate multiple realistic trajectories
of molecular quantities over time given an initial state (e.g.,
species counts), a set of reactions (with associated stochastic
rate constants) and stopping criteria. SSAs are an important
tool in systems biology software suites such as Infobiotics
Workbench1 and have been used for theoretical work.2−4

Exact SSAs, introduced by Gillespie,5 generate trajectories
that are demonstrably equivalent to the Chemical Master
Equation and must simulate each and every reaction in the
system. SSA algorithmic complexity being O(M) (where M is
the set of reactions), and concomitant generation of
pseudorandom numbers to emulate stochasticity for each
reaction event, makes simulating ever larger reaction networks
increasingly intractable despite continued advances in computa-

tional power. This has led to many studies addressing point (1)
above, namely, how to improve the scalability of the SSA. For
example, approximate SSAs have been introduced that condi-
tionally apply multiple reactions at each step6 as well as
optimized exact variants that use improved data structures to
accelerate computations.7−12

However, the availability of multiple variants of the SSA
comes at the cost of a lack of clarity as to which one to use for a
particular biochemical model. More specifically, many pub-
lished SSAs are tested with an insufficient number of models,
mostly tailored to properties of the newly introduced algorithm.
Consequently, it is hard to extrapolate or compare performance
between algorithms as each will often be benchmarked against
competitors’ algorithms using only biochemical models that
perform favorably with the newly introduced algorithm. When
considering these variants, a scientist may wish to know which
SSA will be the fastest for simulating their particular model(s).
Currently, it is common to execute reaction networks with a

single SSA implementation, for example Next Reaction Method
(NRM).7 Due to the lack of model and algorithmic analysis
available, scientists are unaware that a different algorithm may
perform orders of magnitude faster than their “default”
algorithm. To compound this issue, while several stochastic
simulators are freely available,13−16 their selection of algorithms
is limited. Such a situation would result in a scientist limiting

Special Issue: SEED 2014

Received: March 7, 2014
Published: August 22, 2014

Research Article

pubs.acs.org/synthbio

© 2014 American Chemical Society 39 DOI: 10.1021/sb5001406
ACS Synth. Biol. 2015, 4, 39−47

http://ssapredict.ico2s.org
pubs.acs.org/synthbio
http://dx.doi.org/10.1021/sb5001406


the complexity of their model to obtain a tractable simulation
time. Therefore, it is preferable that scientists are provided with
tools that match the best algorithm for their model and allow
for better performing simulations. If simulation time can remain
tractable in spite of increasing model complexity, the
development of finer grained biological knowledge is possible.
The cost of simulating a system with one SSA variant or

another depends on the properties of the underlying network of
the model and the states reached during the simulation. Each
biological model exhibits characteristics that may be suited to a
particular simulation algorithm. Thus, effective discrimination
between SSAs should be based on matching model character-
istics to algorithmic performance. Network analysis is an
important aspect of Systems and Synthetic Biology, but Roy17

notes that usually only a few “handpicked” network properties
are considered to determine the influence of the network
structure. As an example, the StochKit213 simulation software
selects algorithm based on model “properties” but actually only
considers the number of reactions in the model and is therefore

very limited in discrimination. A prediction based on a
comprehensive evaluation of network properties is required
to discriminate between the significant number of SSA variants
that exist as a function of their performance with specific
biochemical models.
To address these problems, we have created a complete

meta-stochastic simulation solution implemented as a user-
friendly Web application called ssapredict. Our tool allows a
scientist to upload their model and automatically predicts the
best algorithm to use. Once a prediction has been made, the
user can download ngss, our portable high performance
simulator, preconfigured to run their model with the predicted
fastest algorithm. Our Web application tackles three issues: (a)
it simplifies the decision making process for the scientist, (b) it
produces an acceptably accurate prediction of SSA-to-model
match, and (c) it standardizes SSA source code contributing to
reproducibility of in silico experiments.
The ngss simulator and ssapredict Web application are under

continuous development and we are open to integrating new

Table 1. Distribution of Best Performing Algorithms for All 380 Models from the Biomodels Data Seta

CR DM NRM FRM LDM SDM TL ODM PDM

0 1 1 2 9 43 75 87 162
0.00% 0.26% 0.26% 0.53% 2.37% 11.32% 19.74% 22.9% 42.63%

aThe first row shows how many times a particular algorithm was the fastest for a model in the data set. The same value is also displayed as a
percentage of the total (second row).

Figure 1. Comparison of the performance of each algorithm against the best performance for each model. The red data points are the algorithm
performance values for each model. The gray data points show the best performance for each model. The models on the horizontal axis are ordered
by best performance.
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algorithmic methods as well as to extend the set of models we
use for training. In the long term, we would like to lead an
effort, in collaboration with other scientists in the field, to
construct an open benchmark composed of both algorithms
and models. This will not only result in improved prediction
accuracy but also increased simulation speed for a wide range of
models.

■ RESULTS AND DISCUSSION
Stochastic Simulation. Our experimental analysis included

eight exact SSA formulations that we had implemented. These
are Direct Method (DM)18 and First Reaction Method
(FRM),5 Next Reaction Method (NRM),7 Optimized Direct
Method (ODM),10 Sorting Direct Method (SDM),8 Loga-
rithmic Direct Method (LDM),9 Partial Propensities Direct
Method (PDM),12 and Composition Rejection (CR).11 An
approximate algorithm, Tau Leaping (TL)6 was also imple-
mented and analyzed. A brief description of these algorithms is
provided in the Simulation Algorithms section.
In our experiments, we used models taken from the

BioModels database19 and the performance (reactions executed
per second of CPU time) of each of the algorithms was
measured for every model. The distribution of best performing
algorithms across all models is shown in Table 1.
To put this result into perspective, we compared the

performance of each algorithm to the best algorithm in the
group for each of the models. Figure 1 shows that three
frequent winners PDM, ODM, and SDM, have very similar
performance profiles (they are all improved variants of DM)
with the notable exception of a few models for which PDM
performs badly. TL, another algorithm in the top 4, performs
exceptionally well for about 20% of the models, but is
outperformed by other algorithms for the rest of the data set.
For the worst performers, CR and FRM, there is a clearly
visible gap that separates their performance from the best.
In Table 2, we show how consistent the top 4 algorithms are.

For each algorithm in the top 4, we measure how many times it

was ranked below the top 4. ODM was the algorithm that most
consistently remained in the top 4 (378 out of 380 models), but
was closely followed by SDM (368 out of 380 models). On the
other hand, PDM and TL were ranked below the top 4 many
times, including being ranked as the worst algorithm for some
models. TL in particular remained in the top 4 for only 80
models.
Performance Prediction. We define meta-stochastic

simulation as an automatic methodology for selecting the
best algorithm for a given model. Different SSAs have varying
performance profiles dependent on a particular model’s
properties. Stochastic models can be represented as graphs of

dependencies between reactions or species. Using these graphs,
we are able to build a topological profile of each model. We use
the topological properties to learn how to predict the fastest
SSA (from a pool of nine algorithms) for a given model.
An example of what we include in the model topological

profile is the number of nodes or the number of connections in
the reaction or species dependency graph. Other properties
contain information about the connections of individual nodes
(node degree), the entire graph (graph density), or the
existence of mutual dependencies (reciprocity). All topological
properties used in our analysis are discussed in the Topological
Analysis section and listed in Table 5.
To provide the reader with an intuition of which graph

topological properties might be useful in algorithm perform-
ance estimation, we performed a small case study. For two top
4 algorithms, PDM and TL, we selected 5 models for which
their performance is the worst and 5 models for which it is the
best. We then measured a median value of each topological
property for the two sets (worst and best) of models. Finally, we
selected 10 properties for which the absolute difference
between median(worst) and median(best) is the highest. We
found that the worst models for PDM had high reaction graph
density and total degree, high species graph min degree and
medium species reciprocity. Interestingly for TL, the worst
models had low reaction graph density and low species graph
min degree, which is the opposite of the worst models for
PDM.
In Figure 2, we show the distribution of normalized values of

properties selected for both algorithms. The species graph min

degree stands out as having a dominating value (here 1) with
many outliers. For other properties, the range of values is much
broader but outliers remain frequent, indicating possible hard
to predict edge cases.

Performance Estimation. Linear regression (ordinary least
squares method) was used to fit a linear model estimating the
performance. Regression was performed on a per algorithm
basis with results shown in Table 3. The coefficient of
determination (R2) is close to 1 (perfect fit) for 7 out of 9
algorithms. PDM and TL algorithms are the exception with R2

of 0.71 and 0.6 respectively, which indicates that their
performance is more difficult to estimate with a linear function.

Table 2. Number of Times One of the 4 Best Performing
Algorithms (See Table 1) Was Ranked below the Top 4 for
Any of the 380 Models from the Biomodels Data Seta

rank ODM SDM PDM TL

>4 2 12 42 300
>5 0 1 22 287
>6 0 0 17 205
>7 0 0 7 51
=9 0 0 6 8

aEach row shows the total number of models for which an algorithm
was ranked under a given threshold. The lowest possible rank was 9.

Figure 2. Distribution of values of selected topological properties. For
all properties, the mean value is equal to 0 and the standard deviation
is equal to 1. The whiskers represent the 1.5 IQR (interquartile range)
past the closest quartile (left/right edge of the box). Observations
outside this range are marked as outliers. Horizontal axis is on a
logarithmic scale.
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Prediction of the Fastest SSA. Employing 10-fold cross-
validation, we aimed to determine the quality of algorithmic
performance predictors that could be generated from the
BioModels data set using model topological properties.
Some of the analyzed model properties are impractical for

use in a prediction tool. This is because with large reaction
networks those properties can require even more computa-
tional time to compute than the simulation time of the model.
A topological features set that was fast to compute (as these
would be the strongest candidates to be used in a tool that
could predict algorithm performance of a particular model a
priori to simulation) was therefore identified (see Table 5 in the
Topological Analysis section).
We used two variants of a random predictor and four

predictors based on well-known methods (linear regression,
logistic regression, support vector classifier, and a nearest
neighbor classifier). For each predictor, we performed a 10-fold
cross-validation experiment and measured the mean accuracy
and standard deviation of the predictions. The accuracy of each
predictor is tested with four tolerance thresholds (ε = [0%, 1%,
5%, 10%]). In this scenario, if the performance of a best
algorithm selected by a predictor for a given model lies within
the tolerance threshold of the performance of the actual best
algorithm, the prediction is scored as correct because the
performance of the predicted best SSA only differed from the
actual best SSA performance by an acceptable amount (e.g.,
10%).
For the first experiment, we decided to assess the

performance of predictors when given the full set of 32
computationally inexpensive ( fast) properties. Results displayed
in Figure 3 demonstrate that all classifiers perform better than a

random selection. k-Nearest Neighbor and linear SVC had the
same prediction accuracy (63% with ε = 0%), which is a
significant improvement over a blind random selection (12%
with ε = 0%). However, from evaluating the prediction quality
at differing tolerance thresholds, it appears that linear SVC was
the strongest predictor (85% with ε = 10%). For comparison, a
blind random selection at ε = 10% results in half the accuracy at
42%.
For a comparative analysis, we subsequently tested the

prediction accuracy with the entire set of 100 slow and fast
topological features, results are shown in Figure 4. Prediction
accuracy overall was similar to the previous (fast properties)
experiment but demonstrated some slight improvement. Linear
SVC was still the strongest predictor and had improved from
63% to 65% (85% to 86% with ε = 10%). As expected, higher
quality predictions occur when more properties are introduced
in the cross-validation experiments (effectively testing on the
training set). However, it is important to note that using just
the computationally inexpensive properties produced results of
similar quality to the full set of properties. Therefore, the strong
performance of the predictors with fast properties means that
we can create a tool that produces an accurate prediction
quickly.

Prediction Inaccuracies. Often the failures of a tool are as
important as its successes. To demonstrate the consequences of
mispredictions of ssapredict, we ran another 10-fold cross-
validation experiment. This time we measured the related
relative performance loss for each inaccurate prediction. Figure
5 shows the distribution of these values for the best predictor in
the group (linear SVC) compared to the random predictors.
The median value for the best predictor was only 5.4% and the

Table 3. Linear Regression Fit of Algorithm Performance on All Models Measured with the Coefficient of Determination (R2)

TL PDM NRM CR FRM SDM ODM DM LDM

0.600 0.712 0.971 0.973 0.979 0.985 0.986 0.989 0.991

Figure 3. Results of the 10-fold cross-validation classification experiment using a reduced set of properties (computational complexity ≤ O(V + E))
with increasing tolerance threshold ε.

Figure 4. Results of the 10-fold cross-validation classification experiment using the total set of available properties with increasing tolerance threshold
ε.
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interquartile range was lower than 20%. This means that most
of the mispredictions correspond to less than a 20%
performance loss. However, we also found several outliers for
which the performance drop was large (up to 86%).
Large Scale Model Experiments. In our final experiment, we

investigated whether the predictors trained on small models
would be accurate for large models. Figure 6 shows the
algorithmic performance for the Escherichia coli quorum sensing
model instantiated on 1 × 1, 10 × 10, and 100 × 100 two-
dimensional lattices (see Table 4 in the Biochemical Models
section for the model network sizes).
The linear SVC predictor selected TL for the single cell

lattice and PDM for the 10 × 10 and 100 × 100 lattices. While
the TL prediction is accurate, for the large lattices CR is the
fastest algorithm. The PDM algorithm is 13% slower than CR
for the 10 × 10 lattice and 82% slower for 100 × 100.
2.3. Web Application. Our meta-stochastic simulation

solution, ssapredict, is implemented as a Web application.
Ssapredict is designed to be easy to use and receiving a
prediction only requires the user to press an upload button and
select the biochemical model of interest (in SBML20 format)
that resides on their computer. Once the prediction has been

made, the user can download our portable high performance
simulator, ngss (next generation stochastic simulator), which is
preconfigured to run the model with the predicted fastest
algorithm.
Figure 7 shows a screen shot of the results after ssapredict

model analysis. Model properties are displayed along with the

predicted fastest algorithm. The simulate model button allows
the user to download the preconfigured ngss binary for their
platform.

Discussion. Our proof-of-concept SSA performance pre-
dictor has demonstrated that even using a limited set of
topological properties it is possible to pick a fast algorithm for a

Figure 5. Distribution of relative performance loss caused by
mispredictions for the best (linear SVC) and worst predictors (two
variants of random choice). The whiskers represent the 1.5 IQR
(interquartile range) past the closest quartile (top/bottom edge of the
box). Observations outside this range are marked as outliers.

Figure 6. Average performance for the Escherichia coli quorum sensing circuit. The model was instantiated on a square lattice with 1, 100, and 10 000
points. The algorithms on the horizontal axis are sorted from the slowest to the fastest and uniquely colored. The vertical axis shows algorithmic
performance in reactions per second and is on a logarithmic scale. The error bar shows the standard deviation across 10 runs.

Table 4. Reaction and Species Graph Sizes for Different
Versions of the Stochastic Escherichia coli AI-2 quorum
Signal Circuit Model from Li et al.a

model size reactions species

1 × 1 25 21
10 × 10 2860 2100
100 × 100 289600 210000

aThe model size is the number of points on a 2D lattice on which the
model was instantiated.

Figure 7. Screenshot displaying the results of analysis performed on a
model by ssapredict. Model topological properties can be inspected and
a prediction of fastest algorithm is displayed. There is an option to
simulate the model.
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given model. The prediction accuracy was found to be much
higher than a random choice. In addition, this work has
highlighted that no single SSA is superior to all others for all
models. For example, for models with high min degree in
species graph TL outperforms PDM, but when that degree is
low, PDM outperforms TL.
Looking back at the distribution of fastest algorithms (Table

1 and Figure 1), some results are to be expected. For example,
FRM being a weak performer, and a more sophisticated
algorithm such as PDM being a strong performer. However, we
see some unexpected results too, such as one of the most
sophisticated algorithms, CR, never winning and NRM being a
less frequent winner than FRM. Table 2 demonstrates that
while an algorithm may be considered the fastest for a
significant number of models, there are also models for which it
may perform poorly. TL was the fastest algorithm for 75 out of
380 models but was also ranked below the top 4 algorithms for
300 models. This result highlights the importance of selecting
an algorithm on a per model basis rather than using a single
algorithm for all models.
The large scale model prediction experiment results (see

Figure 6) show that CR is the fastest algorithm for these larger
models. Due to lack of models of this scale in our training set,
ssapredict is unable to predict that result. However, it does
select PDM, the second fastest algorithm in the group. This is
one of the limitations in predictor accuracyit is highly
dependent on the size and variability of models used for
training. In order to train better quality predictors, a larger
number of models is needed, preferably containing special
instances with which each of the algorithms was designed to
perform best.
While there are many biochemical models available in the

literature and online, there are few that are specifically intended
for stochastic simulation. Most of the models we used from the
BioModels data set were deterministic models, and to simulate
them stochastically, we fixed rate constants. While there are
many complete deterministic models available from online
databases, few complete curated stochastic models are freely
available. Therefore, a future analysis featuring complete
stochastic models will have to be preceded by the creation of
a data set with a large number of curated stochastic models.
Initial species amounts were set to a constant 100 to

complement the static topological analysis. A major limitation
of our current analysis is that it will not be able to account for
transient changes that occur within a simulated stochastic
model. This is important because high copy numbers of
chemical species can create intractable simulation conditions
for exact algorithms.
With a larger and more diverse training set, we should be

able to minimize the cost of mispredictions. Although currently
it is often small (median value of the relative performance drop
was 5.4%), there are edge cases where the predictor is choosing
an algorithm with 15% of the performance of the best algorithm
in the group.
We believe that future work in this area must include a

comprehensive benchmark of algorithms with a large set of
models that exhibit varied characteristics. This work can be
considered a precursor to producing a meta-stochastic
simulator that can dynamically switch algorithms when
transient changes that affect performance occur in a
biochemical system. As Synthetic Biology aims to compose
large systems from smaller biological components, it is expected
that the size of models will increase rapidly in the future. These

large systems will be intractable for simulation without further
algorithmic innovation. In our opinion, meta-stochastic
simulation is one of the ways to keep up with the growing
requirements of Synthetic Biology.
We invite scientists to contribute biological models and

stochastic simulation algorithms that we could use to improve
ssapredict. Submission instructions are available at the ssapredict
Web site: http://ssapredict.ico2s.org. We intend to periodically
retrain the predictor with a growing set of models and to add
more algorithms to the ngss simulator.

■ METHODS
Simulation Algorithms. In this section, we will give a brief

review of the algorithms available for prediction in ssapredict
and consequent simulation in ngss. FRM was the first SSA
introduced by Gillespie in 1976. FRM is a simple algorithm that
requires a random number generated for each reaction in the
system every algorithmic iteration.5 DM was introduced to
replace FRM and only required two random numbers
generated per algorithmic iteration. DM is the de facto standard
SSA formulation and is still commonly used for simulation.18

NRM (based on FRM) used a large number of optimizations
including the use of a reaction dependency graph to minimize
propensity recalculation and a priority queue to find the next
reaction to fire. Furthermore, NRM only required one random
number generated per iteration.7 ODM builds on DM with a
reaction dependency graph and reduces reaction search depth
by performing a prerun and sorting reactions by their likelihood
of firing.10 SDM is similar to ODM but dynamically sorts
reactions during algorithm execution. This means that SDM
performs well with simulations that experience significant
transient fluctuations.8 LDM is similar to ODM and SDM but
uses a binary search to reduce reaction search depth.9

PDM builds on DM but uses a species dependency graph
and factors out reaction propensities by species. PDM claims to
be superior for highly coupled reaction networks.12 CR is
another DM variant, which uses rejection sampling to select the
next reaction and thus claims constant time scaling. Therefore,
in theory, CR should outperform other exact algorithms when
presented with large reaction networks. CR uses composition
(reaction propensity grouping) to reduce the number of
rejections per algorithmic iteration.11

In addition to the exact SSAs, there are many approximate
and hybrid algorithms.6,21−23 At this stage, we focused on exact
methods and have only included one approximate method
(explicit TL). We selected TL, as it is the first hybrid method
introduced by Gillespie and can be considered as the de facto
standard hybrid SSA formulation. TL is an approximate
algorithm that applies many reactions per algorithmic step
(rather than one per step as in the exact formulations). This is
dependent on the propensities of the system being relatively
stable, otherwise the algorithm reverts to DM.6 We used an
updated version of TL that incorporates optimized step size
selection.24

As more algorithms are added to the ngss simulator in the
future, we will also retrain our predictor to offer the best
simulation option for the user’s model.

Biochemical Models. We used 380 models retrieved from
the BioModels database19 in SBML20 format. These models
describe various different biological processes and are curated
from peer reviewed literature. This gives us access to a large
number of models used by scientists with variation in reaction
network sizes. In Figure 8, a histogram is shown displaying the
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spread of model size within the data set, quantified by the
number of reactions in the model. It can be seen from the
histogram that the vast majority of BioModels have a reaction
network size of 50 reactions or less, but there is also a small
number of larger models (up to 1800 reactions).
Our proof-of-concept algorithmic performance predictors

only consider static structural model topological properties to
test if we could make accurate predictions with that data.
Therefore, alterations were made to models to focus on the
model structure analysis. In order to simplify models and
remove extra variables that cannot be captured by the
dependency graph analysis, the amounts of all species were
set to 100 and remain constant throughout simulation. The
BioModels usually contain deterministic rate functions instead
of stochastic rate constants, and thus, a decision was made to
set the stochastic rate constants of all reactions to 1.0. This is
technically justified as it turns the deterministic models into
stochastic ones and because the property analysis is performed
upon the unweighted dependency graphs derived from these
models (i.e., dependency graphs independent of reaction rates).
As the BioModels are limited in size, we were interested to

test the accuracy of the predictors algorithmic performance
when presented with a much larger model. We used the
Escherichia coli AI-2 quorum signal circuit from Li et al.25 While
this model only contains 25 reactions and 21 species, we scaled
it up by instantiating it on each point of a hypothetical two-

dimensional lattice. We generated 10 × 10 and 100 × 100
models, adding transport reactions between adjacent lattice
points to incorporate quorum signal molecule transfer (see
Table 4).

Topological Analysis. Ssapredict performs a model
property analysis and uses the results to predict the fastest
SSA for that model. After parsing the model, a reaction
dependency graph and species dependency graph are
generated. In a reaction dependency graph, each vertex
corresponds to a unique reaction, hence the number of vertices
in a reaction dependency graph is equal to the number of
reactions in the model. A directed edge is placed from vertex Vi
to vertex Vj if the firing of reaction Ri changes the propensity of
reaction Rj. In a species dependency graph, each vertex
corresponds to a unique species, and so the number of vertices
in a species dependency graph is equal to the number of species
in the model. A directed edge is drawn from vertex Vi to vertex
Vj if for any reaction species Si is a reactant and species Sj is a
product. Any duplicate edges are removed from each graph.
54 properties were generated for each of the reaction and

species dependency graphs of a model. An additional property,
reaction stiffness ratio, was also calculated bringing the total
number of properties to 109. For some models certain
properties were not possible to compute, for example, when a
division by zero occurred. We replaced all missing values with
zeros. Nine model properties were found to be constant for all
models and therefore would be of no use as performance
indicators and thus were removed from the data set, resulting in
100 model properties available for analysis. Ssapredict analyses a
restricted set of 32 fast (computational complexity ≤ O(V +
E)) properties ensuring that the graph analysis completes in a
timely manner (see Table 5).

Algorithm Performance. The performance metric used to
measure algorithmic computational speed was reactions per
second (rps) of CPU time. Rps allows one to compare
algorithm performance in a manner that ignores simulation run
time. This means that algorithm performance can be compared
between two models that take vastly differing amounts of time
to execute. Using rps also improves comparative accuracy, if we
wish to run an algorithm for x seconds, and measure how many
reactions are executed, the amount of time elapsed would
almost certainly not be exactly x seconds, but a number
extremely close to x seconds. If this was compared to another
run of x seconds, neither run would be exactly the same amount
of time, and thus a comparison in this manner would lose
accuracy. Dividing the number of reactions executed by the

Figure 8. Distribution of the size of model reaction network across the
BioModels data set. The bin size is 25. The vertical axis is on a
logarithmic scale.

Table 5. Summary of Model Topological Properties Analyzeda

computational complexity graph property

O(1)† number of edges, number of vertices, density of graph
O(V)† min/mean/max outgoing edges, min/mean/max incoming edges, min/mean/max all edges
O(V + E)† weakly connected components, articulation points, biconnected components, reciprocity of directed graph
O(V E) average geodesic length, longest geodesic length, min/mean/max outgoing closeness, min/mean/max incoming closeness,

min/mean/max closeness in undirected graph, min/mean/max betweenness, min/mean/max betweenness in undirected graph,
min/mean/max edge betweenness, min/mean/max edge betweenness undirected graph

O(V (V + E)) min/mean/max shortest path in undirected graph, min/mean/max shortest incoming path, min/mean/max shortest outgoing path
O((V + E)2) girth of undirected graph
O(V d2) transitivity of graph vertices, average local transitivity
O(V4) min edge connectivity
O(V5) min vertex connectivity

aComplexity relates to worst case time complexity for the computation of the propensity, where V is vertices, E is edges, and d is the average node
degree. Properties marked with † have constant or linear scaling and are used for the restricted set of fast properties.
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exact simulation time to get a result in rps leaves us with a value
that is appropriate for comparison. All runs were executed on a
single core of an otherwise idle benchmarking machine that
possessed an Intel i7 2600K CPU with 16GB RAM and was
running Ubuntu 11.04. The large amount of RAM available and
size of models involved meant that all simulations could be run
in memory and thus avoid performance deteriorations caused
by memory paging.
Each of the BioModels were executed for 10 s of CPU time

for all 9 algorithms. Each algorithm was run 10 times on each
model, hence a total of 90 rps values for each model. Because
the BioModels were void of parameters such as simulation time
and species amounts, it was decided that 10 s of CPU time for
each model/algorithm combination would be enough to
determine an accurate result for algorithm performance.
Prediction Experiment Classifiers. We used two variants

of a random predictor, a classifier based on a set of linear
regression estimators trained separately for each algorithm,
logistic regression,26 support vector classifier with linear
kernel,27 and a nearest neighbor classifier28 using a vote of 5
nearest models. For each predictor we performed a 10-fold
cross-validation experiment and measured the mean accuracy
and standard deviation.
The two random predictors used different amounts of

information. First was a blind random predictor which assumed
that each algorithm is equally probable to perform best. The
probability of such a blind guess to be correct is equal to 1/9
(see eq 1).

∑ ∑= = =p wp p
1
9

1
9i

i i
i

i
(1)

The second random predictor assumed that each algorithm is
as probable as it was observed in the training set. Then, roulette
wheel selection was used to make a prediction. In the ideal case,
the informed random guess would assign a weight equal to the
true probability of winning for each algorithm (see eq 2). Given
the distribution of winners in our benchmark, we expect the
probability of a correct guess to be three times greater than in
the case of the blind guess.

∑ ∑= = ≃p wp p 0.27
i

i i
i

i
2

(2)

Web Application Architecture. The ssapredict Web
application is built with Python using the Web2Py frame-
work.29 Figure 9 visualizes the structure and work-flow of
ssapredict. Models are uploaded to ssapredict in SBML20 format
and parsed using libSBML.30 After producing dependency
graphs from the model data, a model topological analysis is
performed. The model property analysis software is written in

C++ with performance as a design priority and calls functions
from the igraph31 library to compute graph properties. Data
and source code for various components of the ssapredict web
application are available at http://ssapredict.ico2s.org/resour-
ces.
The application then performs fast property analysis of the

supplied model using the set of 32 computationally inexpensive
properties. The result of this model analysis is delivered to a
linear SVC classifier which makes a prediction of the fastest
algorithm to simulate the model. Linear SVC was the best
performing classification method identified by the cross-
validation experiments and is trained with the algorithmic
performance data and fast set of properties for all models. The
linear SVC classifier is written in Python using scikit-learn.32

After a prediction has been made, ssapredict allows users to
simulate their models with the predicted fastest algorithm. The
simulator ngss is written in C++ with an emphasis on
performance and released under the terms of the GNU
General Public License. Ngss is portable and will operate on
GNU/Linux, Mac OS X, and Windows platforms. Ngss is
distributed such that no extra dependencies need to be installed
by the user. Ngss supports OpenMP, allowing parallel runs
(stochastic trajectories) on multicore computers. Ssapredict
simulation functionality is provided to the user through a zip
archive that contains the uploaded model and simulator
executable for their platform. An autogenerated simulation
parameter file that configures ngss is also contained in the
archive. By simply extracting the files and entering a one line
command (instructions provided in archive), the user can
generate stochastic trajectories as time-series in CSV format.
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Krasnogor, N. (2010) Evolving cell models for systems and synthetic
biology. Syst. Synth. Biol. 4, 55−84.
(4) Romero-Campero, F. J., Twycross, J., Caḿara, M., Bennett, M.,
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